MCP4902/4912/4922

8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface

Features
- MCP4902: Dual 8-Bit Voltage Output DAC
- MCP4912: Dual 10-Bit Voltage Output DAC
- MCP4922: Dual 12-Bit Voltage Output DAC
- Rail-to-Rail Output
- SPI Interface with 20 MHz Clock Support
- Simultaneous Latching of the Dual DACs with LDAC pin
- Fast Settling Time of 4.5 µs
- Selectable Unity or 2x Gain Output
- External Voltage Reference Inputs
- External Multiplier Mode
- 2.7V to 5.5V Single-Supply Operation
- Extended Temperature Range: -40°C to +125°C

Applications
- Set Point or Offset Trimming
- Precision Selectable Voltage Reference
- Motor Control Feedback Loop
- Digitally-Controlled Multiplier/Divider
- Calibration of Optical Communication Devices

Description
The MCP4902/4912/4922 devices are dual 8-bit, 10-bit, and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be V_{REF} or $2 \cdot V_{REF}$ by setting the Gain Selection Option bit (gain of 1 or 2).

The user can shut down both DAC channels by using SHDN pin or shut down the DAC channel individually by setting the Configuration register bits. In Shutdown mode, most of the internal circuits in the shutdown channel are turned off for power savings and the output amplifier is configured to present a known high resistance output load (500 kΩ, typical).

The devices include double-buffered registers, allowing synchronous updates of two DAC outputs, using the LDAC pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable power-up.

The devices utilize a resistive string architecture, with its inherent advantages of low DNL error and fast settling time. These devices are specified over the extended temperature range (+125°C).

The devices provide high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) are required.

The MCP4902/4912/4922 devices are available in the PDIP, SOIC and TSSOP packages.

Related Products

<table>
<thead>
<tr>
<th>P/N</th>
<th>DAC Resolution</th>
<th>No. of Channels</th>
<th>Voltage Reference (V_{REF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP4801</td>
<td>8</td>
<td>1</td>
<td>Internal (2.048V)</td>
</tr>
<tr>
<td>MCP4811</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCP4821</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCP4802</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCP4812</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCP4822</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCP4901</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCP4911</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCP4921</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCP4902</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCP4912</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCP4922</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The products listed here have similar AC/DC performances.

Package Types

14-Pin PDIP, SOIC, TSSOP

- V_{DD}
- NC
- CS
- SCK
- SDI
- NC
- NC
- V_{SS}
- V_{REFA}
- V_{REFB}
- V_{OUTA}
- V_{OUTB}
- SHDN
- LDAC

MCP4902: 8-bit dual DAC
MCP4912: 10-bit dual DAC
MCP4922: 12-bit dual DAC
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- **V_{DD}**: 6.5V
- All inputs and outputs w.r.t. V_{SS}: -0.3V to V_{DD}+0.3V
- Current at Input Pins: ±2 mA
- Current at Supply Pins: ±50 mA
- Current at Output Pins: ±25 mA
- Storage temperature: -65°C to +150°C
- Ambient temp. with power applied: -55°C to +125°C
- ESD protection on all pins: ≥ 4 kV (HBM), ≥ 400V (MM)
- Maximum Junction Temperature (T_J): +150°C

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Output Buffer Gain (G) = 2x, $R_L = 5 \, k\Omega$ to GND, $C_L = 100 \, pF$, $T_A = -40$ to +85°C. Typical values are at +25°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>V_{DD}</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>$V_{DD} = 5V$</td>
</tr>
<tr>
<td>Operating Current</td>
<td>I_{DD}</td>
<td>—</td>
<td>350</td>
<td>700</td>
<td>µA</td>
<td>$V_{DD} = 5V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{DD} = 3V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>250</td>
<td>500</td>
<td>µA</td>
<td>V_{REF} input is unbuffered, all digital inputs are grounded, all analog outputs (V_{OUT}) are unloaded. Code = 000h.</td>
</tr>
<tr>
<td>Hardware Shutdown Current</td>
<td>I_{SHDN}</td>
<td>—</td>
<td>0.3</td>
<td>2</td>
<td>µA</td>
<td>Power-on Reset circuit is turned off</td>
</tr>
<tr>
<td>Software Shutdown Current</td>
<td>$I_{SHDN, SW}$</td>
<td>—</td>
<td>3.3</td>
<td>6</td>
<td>µA</td>
<td>Power-on Reset circuit stays on</td>
</tr>
<tr>
<td>Power-on-Reset Threshold</td>
<td>V_{POR}</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>-1</td>
<td>±0.125</td>
<td>1</td>
<td>LSb</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>-0.5</td>
<td>±0.1</td>
<td>+0.5</td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>-3.5</td>
<td>±0.5</td>
<td>3.5</td>
<td>LSb</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>-0.5</td>
<td>±0.1</td>
<td>+0.5</td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>-12</td>
<td>±2</td>
<td>12</td>
<td>LSb</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>-0.75</td>
<td>±0.2</td>
<td>+0.75</td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>Offset Error</td>
<td>V_{OS}</td>
<td>—</td>
<td>±0.02</td>
<td>1</td>
<td>% of FSR</td>
<td>Code = 0x000h</td>
</tr>
</tbody>
</table>

Note 1: Guaranteed monotonic by design over all codes.

2: This parameter is ensured by design, and not 100% tested.
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, \(V_{DD} = 5\,\text{V} \), \(V_{SS} = 0\,\text{V} \), \(V_{REF} = 2.048\,\text{V} \), Output Buffer Gain (\(G \)) = 2x, \(R_L = 5\,k\Omega \) to GND, \(C_L = 100\,\text{pF} \), \(T_A = -40\) to +85°C. Typical values are at +25°C.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Error Temperature Coefficient</td>
<td>(V_{OS}/^\circ\text{C})</td>
<td>—</td>
<td>0.16</td>
<td>—</td>
<td>ppm/°C</td>
<td>-45°C to 25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>-0.44</td>
<td></td>
<td>—</td>
<td>ppm/°C</td>
<td>+25°C to 85°C</td>
</tr>
<tr>
<td>Gain Error</td>
<td>(g_E)</td>
<td>—</td>
<td>-0.10</td>
<td>1</td>
<td>% of FSR</td>
<td>Code = 0xFFFh, not including offset error</td>
</tr>
<tr>
<td>Gain Error Temperature Coefficient</td>
<td>(\Delta G/^\circ\text{C})</td>
<td>—</td>
<td>-3</td>
<td>—</td>
<td>ppm/°C</td>
<td></td>
</tr>
</tbody>
</table>

Input Amplifier (V_{REF} Input)

<table>
<thead>
<tr>
<th>Input Range – Buffered Mode</th>
<th>(V_{REF})</th>
<th>0.040</th>
<th></th>
<th>(V_{DD} - 0.040)</th>
<th>V</th>
<th>Note 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code = 2048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{REF} = 0.2,\text{V-p-p}, f = 100,\text{Hz})</td>
</tr>
<tr>
<td>Input Range – Unbuffered Mode</td>
<td>(V_{REF})</td>
<td>0</td>
<td></td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>(R_{VREF})</td>
<td>165</td>
<td></td>
<td>—</td>
<td>kΩ</td>
<td>Unbuffered Mode</td>
</tr>
<tr>
<td>Input Capacitance – Unbuffered Mode</td>
<td>(C_{VREF})</td>
<td>7</td>
<td></td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Multiplier Mode -3 dB Bandwidth</td>
<td>(f_{VREF})</td>
<td>450</td>
<td></td>
<td>—</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Multiplier Mode – Total Harmonic Distortion</td>
<td>THD_{VREF}</td>
<td>-73</td>
<td></td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Output Amplifier

<table>
<thead>
<tr>
<th>Output Swing</th>
<th>(V_{OUT})</th>
<th>0.01 to (V_{DD} - 0.04)</th>
<th></th>
<th>—</th>
<th>V</th>
<th>Accuracy is better than 1 LSb for (V_{OUT} = 10,\text{mV}) to ((V_{DD} - 40,\text{mV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Margin</td>
<td>(\theta_m)</td>
<td>66</td>
<td></td>
<td>—</td>
<td>degrees</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>(SR)</td>
<td>0.55</td>
<td></td>
<td>—</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>(I_{SC})</td>
<td>15</td>
<td>24</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settling Time</td>
<td>(t_{settling})</td>
<td>4.5</td>
<td></td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Dynamic Performance (Note 2)</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>DAC-to-DAC Crosstalk</td>
<td></td>
<td>10</td>
<td></td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>Major Code Transition Glitch</td>
<td></td>
<td>45</td>
<td></td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>Digital Feedthrough</td>
<td></td>
<td>10</td>
<td></td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>Analog Crosstalk</td>
<td></td>
<td>10</td>
<td></td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Guaranteed monotonic by design over all codes.

Note 2: This parameter is ensured by design, and not 100% tested.
ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5\text{V}$, $V_{SS} = 0\text{V}$, $V_{REF} = 2.048\text{V}$, Output Buffer Gain (G) = 2x, $R_L = 5\,\text{k}\Omega$ to GND, $C_L = 100\,\text{pF}$. Typical values are at $+125^\circ\text{C}$ by characterization or simulation.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>V_{DD}</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Current</td>
<td>I_{DD}</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>μA</td>
<td>V_{REF} input is unbuffered, all digital inputs are grounded, all analog outputs (V_{OUT}) are unloaded. Code=000h</td>
</tr>
<tr>
<td>Hardware Shutdown Current</td>
<td>I_{SHDN}</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>μA</td>
<td>POR circuit is turned-off</td>
</tr>
<tr>
<td>Software Shutdown Current</td>
<td>I_{SHDN_SW}</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>μA</td>
<td>POR circuit stays turned-on</td>
</tr>
<tr>
<td>Power-On Reset threshold</td>
<td>V_{POR}</td>
<td>—</td>
<td>1.85</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP4902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>±0.25</td>
<td></td>
<td></td>
<td>LSb</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>±0.2</td>
<td></td>
<td></td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>MCP4912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>±1</td>
<td></td>
<td></td>
<td>LSb</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>±0.2</td>
<td></td>
<td></td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>MCP4922</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>n</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL Error</td>
<td>INL</td>
<td>±4</td>
<td></td>
<td></td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>DNL</td>
<td>DNL</td>
<td>±0.25</td>
<td></td>
<td></td>
<td>LSb</td>
<td>Note 1</td>
</tr>
<tr>
<td>Offset Error</td>
<td>V_{OS}</td>
<td>—</td>
<td>±0.02</td>
<td>—</td>
<td>% of FSR</td>
<td>Code = 0x000h</td>
</tr>
<tr>
<td>Offset Error Temperature Coefficient</td>
<td>$V_{OS}/^\circ\text{C}$</td>
<td>—</td>
<td>-5</td>
<td>—</td>
<td>ppm$/^\circ\text{C}$</td>
<td>+25$^\circ\text{C}$ to +125$^\circ\text{C}$</td>
</tr>
<tr>
<td>Gain Error</td>
<td>g_E</td>
<td>—</td>
<td>-0.10</td>
<td>—</td>
<td>% of FSR</td>
<td>Code = 0xFFFFh, not including offset error</td>
</tr>
<tr>
<td>Gain Error Temperature Coefficient</td>
<td>$\Delta G/^\circ\text{C}$</td>
<td>—</td>
<td>-3</td>
<td>—</td>
<td>ppm$/^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>Input Amplifier (V_{REF} Input)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range – Buffered Mode</td>
<td>V_{REF}</td>
<td>—</td>
<td>0.040 to $V_{DD} - 0.040$</td>
<td>—</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Input Range – Unbuffered Mode</td>
<td>V_{REF}</td>
<td>0</td>
<td>—</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>R_{VREF}</td>
<td>—</td>
<td>174</td>
<td>—</td>
<td>$\text{k}\Omega$</td>
<td>Unbuffered mode</td>
</tr>
<tr>
<td>Input Capacitance – Unbuffered Mode</td>
<td>C_{VREF}</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Guaranteed monotonic by design over all codes.

Note 2: This parameter is ensured by design, and not 100% tested.
Multiplying Mode

-3 dB Bandwidth

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{VREF}</td>
<td>—</td>
<td>450</td>
<td>—</td>
<td>kHz</td>
<td>$V_{REF} = 2.5V \pm 0.1 V_{p-p}$, Unbuffered, G = 1x</td>
</tr>
<tr>
<td>f_{VREF}</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>kHz</td>
<td>$V_{REF} = 2.5V \pm 0.1 V_{p-p}$, Unbuffered, G = 2x</td>
</tr>
</tbody>
</table>

Multiplying Mode – Total Harmonic Distortion

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD_{VREF}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td>$V_{REF} = 2.5V \pm 0.1V_{p-p}$, Frequency = 1 kHz</td>
</tr>
</tbody>
</table>

Output Amplifier

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Swing</td>
<td>—</td>
<td>0.01 to $V_{DD} - 0.04$</td>
<td>—</td>
<td>V</td>
<td>Accuracy is better than 1 LSb for $V_{OUT} = 10 mV$ to $(V_{DD} - 40 mV)$</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>—</td>
<td>66</td>
<td>—</td>
<td>degrees</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>—</td>
<td>0.55</td>
<td>—</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>—</td>
<td>17</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Settling Time</td>
<td>—</td>
<td>4.5</td>
<td>—</td>
<td>µs</td>
<td>Within 1/2 LSb of final value from 1/4 to 3/4 full-scale range</td>
</tr>
</tbody>
</table>

Dynamic Performance (Note 2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC to DAC Crosstalk</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>Major Code Transition Glitch</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>nV-s</td>
<td>1 LSb change around major carry (0111...1111 to 1000...0000)</td>
</tr>
<tr>
<td>Digital Feedthrough</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
<tr>
<td>Analog Crosstalk</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>nV-s</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Guaranteed monotonic by design over all codes.

Note 2: This parameter is ensured by design, and not 100% tested.
AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 2.7V – 5.5V$, $T_A = -40$ to $+125^\circ C$.

Typical values are at $+25^\circ C$.

<table>
<thead>
<tr>
<th>Parameters Description</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmitt Trigger High-Level Input Voltage (All digital input pins)</td>
<td>V_{IH}</td>
<td>0.7 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Schmitt Trigger Low-Level Input Voltage (All digital input pins)</td>
<td>V_{IL}</td>
<td>—</td>
<td>—</td>
<td>0.2 V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Hysteresis of Schmitt Trigger Inputs</td>
<td>V_{HYS}</td>
<td>—</td>
<td>0.05 V_{DD}</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>$I_{LEAKAGE}$</td>
<td>-1</td>
<td>—</td>
<td>1 μA</td>
<td></td>
<td>SHDN = LDAC = CS = SDI = SCK + $V_{REF} = V_{DD}$ or V_{SS}</td>
</tr>
<tr>
<td>Digital Pin Capacitance (All inputs/outputs)</td>
<td>C_{IN}, C_{OUT}</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>pF</td>
<td>$V_{DD} = 5.0V, T_A = +25^\circ C, f_{CLK} = 1 MHz (Note 1)$</td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>f_{CLK}</td>
<td>—</td>
<td>—</td>
<td>20 MHz</td>
<td></td>
<td>$T_A = +25^\circ C (Note 1)$</td>
</tr>
<tr>
<td>Clock High Time</td>
<td>t_{HI}</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>Clock Low Time</td>
<td>t_{LO}</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>CS Fall to First Rising CLK Edge</td>
<td>t_{CSSR}</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Applies only when CS falls with CLK high. (Note 1)</td>
</tr>
<tr>
<td>Data Input Setup Time</td>
<td>t_{SU}</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>Data Input Hold Time</td>
<td>t_{HD}</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>SCK Rise to CS Rise Hold Time</td>
<td>t_{CHS}</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>CS High Time</td>
<td>t_{CSH}</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>LDAC Pulse Width</td>
<td>t_{LD}</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>LDAC Setup Time</td>
<td>t_{LS}</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>SCK Idle Time before CS Fall</td>
<td>t_{IDLE}</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

Note 1: This parameter is ensured by design and not 100% tested.

Figure 1-1: SPI Input Timing Data.
TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +2.7V$ to $+5.5V$, $V_{SS} = GND$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>Note 1</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-PDIP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-SOIC</td>
<td>θ_{JA}</td>
<td>—</td>
<td>120</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-TSSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The MCP4902/4912/4922 devices operate over this extended temperature range, but with reduced performance. Operation in this range must not cause T_J to exceed the maximum junction temperature of 150°C.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25°C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Gain = 2x, $R_L = 5\, k\Omega$, $C_L = 100\, pF$.

FIGURE 2-1: DNL vs. Code (MCP4922).

FIGURE 2-2: DNL vs. Code and Temperature (MCP4922).

FIGURE 2-3: DNL vs. Code and V_{REF} Gain = 1 (MCP4922).

FIGURE 2-4: Absolute DNL vs. Temperature (MCP4922).

FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4922).

FIGURE 2-6: INL vs. Code and Temperature (MCP4922).
MCP4902/4912/4922

Note: Unless otherwise indicated, \(T_A = +25^\circ C \), \(V_{DD} = 5V \), \(V_{SS} = 0V \), \(V_{REF} = 2.048V \), \(\text{Gain} = 2 \), \(R_L = 5 \, k\Omega \), \(C_L = 100 \, \text{pF} \).

FIGURE 2-7: Absolute INL vs. Temperature (MCP4922).

FIGURE 2-8: Absolute INL vs. \(V_{REF} \) (MCP4922).

FIGURE 2-9: INL vs. Code and \(V_{REF} \) (MCP4922).

FIGURE 2-10: INL vs. Code (MCP4922).

FIGURE 2-11: DNL vs. Code and Temperature (MCP4912).

FIGURE 2-12: INL vs. Code and Temperature (MCP4912).

Note: Single device graph (Figure 2-10) for illustration of 64 code effect.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Gain = 2x, $R_L = 5 \, k\Omega$, $C_L = 100 \, pF$.

FIGURE 2-13: DNL vs. Code and Temperature (MCP4902).

FIGURE 2-14: INL vs. Code and Temperature (MCP4902).

FIGURE 2-15: I_{DD} vs. Temperature and V_{DD}.

FIGURE 2-16: I_{DD} Histogram ($V_{DD} = 2.7V$).

FIGURE 2-17: I_{DD} Histogram ($V_{DD} = 5.0V$).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Gain = 2x, $R_L = 5 \, \Omega$, $C_L = 100 \, pF$.

FIGURE 2-18: Hardware Shutdown Current vs. Ambient Temperature and V_{DD}.

FIGURE 2-19: Software Shutdown Current vs. Ambient Temperature and V_{DD}.

FIGURE 2-20: Offset Error vs. Ambient Temperature and V_{DD}.

FIGURE 2-21: Gain Error vs. Ambient Temperature and V_{DD}.

FIGURE 2-22: V_{IN} High Threshold vs Ambient Temperature and V_{DD}.

FIGURE 2-23: V_{IN} Low Threshold vs Ambient Temperature and V_{DD}.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Gain = $2x$, $R_L = 5 \text{k}\Omega$, $C_L = 100 \text{ pF}$.

FIGURE 2-24: Input Hysteresis vs. Ambient Temperature and V_{DD}.

FIGURE 2-25: V_{REF} Input Impedance vs. Ambient Temperature and V_{DD}.

FIGURE 2-26: V_{OUT} High Limit vs. Ambient Temperature and V_{DD}.

FIGURE 2-27: V_{OUT} Low Limit vs. Ambient Temperature and V_{DD}.

FIGURE 2-28: I_{OUT} High Short vs. Ambient Temperature and V_{DD}.

FIGURE 2-29: I_{OUT} vs V_{OUT}: Gain = $1x$.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Gain = 2x, $R_L = 5\,k\Omega$, $C_L = 100\,pF$.

FIGURE 2-30: V_{OUT} Rise Time.

FIGURE 2-31: V_{OUT} Fall Time.

FIGURE 2-32: V_{OUT} Rise Time.

FIGURE 2-33: V_{OUT} Rise Time.

FIGURE 2-34: V_{OUT} Rise Time Exit Shutdown.

FIGURE 2-35: PSRR vs. Frequency.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.50V$, Gain = 2x, $R_L = 5 \, k\Omega$, $C_L = 100 \, pF$.

FIGURE 2-36: Multiplier Mode Bandwidth.

FIGURE 2-37: -3 db Bandwidth vs. Worst Codes.

FIGURE 2-38: Phase Shift.

Note:
\[
\text{Attenuation (dB)} = 20 \log \left(\frac{V_{\text{OUT}}}{V_{\text{REF}}} \right) - 20 \log \left(\frac{D_n \cdot G}{4096} \right)
\]
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V DD</td>
<td>Supply Voltage Input (2.7V to 5.5V)</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Chip Select Input</td>
</tr>
<tr>
<td>4</td>
<td>SCK</td>
<td>Serial Clock Input</td>
</tr>
<tr>
<td>5</td>
<td>SDI</td>
<td>Serial Data Input</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>8</td>
<td>LDAC</td>
<td>Synchronization Input. This pin is used to transfer DAC settings (Input Registers) to the output registers (V OUT)</td>
</tr>
<tr>
<td>9</td>
<td>SHDN</td>
<td>Hardware Shutdown Input</td>
</tr>
<tr>
<td>10</td>
<td>V OUTB</td>
<td>DAC B Output</td>
</tr>
<tr>
<td>11</td>
<td>VREFB</td>
<td>DAC B Reference Voltage Input (V SS to V DD)</td>
</tr>
<tr>
<td>12</td>
<td>V SS</td>
<td>Ground reference point for all circuitry on the device</td>
</tr>
<tr>
<td>13</td>
<td>VREFA</td>
<td>DAC A Reference Voltage Input (V SS to V DD)</td>
</tr>
<tr>
<td>14</td>
<td>V OUTA</td>
<td>DAC A Output</td>
</tr>
</tbody>
</table>

3.1 Supply Voltage Pins (V DD, V SS)

V DD is the positive supply voltage input pin. The input supply voltage is relative to V SS and can range from 2.7V to 5.5V. The power supply at the V DD pin should be as clean as possible for a good DAC performance. It is recommended to use an appropriate bypass capacitor of about 0.1 µF (ceramic) to ground. An additional 10 µF capacitor (tantalum) in parallel is also recommended to further attenuate high frequency noise present in application boards.

V SS is the analog ground pin and the current return path of the device. The user must connect the V SS pin to a ground plane through a low-impedance connection. If an analog ground path is available in the application Printed Circuit Board (PCB), it is highly recommended that the V SS pin be tied to the analog ground path or isolated within an analog ground plane of the circuit board.

3.2 Chip Select (CS)

CS is the Chip Select input, which requires an active low signal to enable serial clock and data functions.

3.3 Serial Clock Input (SCK)

SCK is the SPI compatible serial clock input pin.

3.4 Serial Data Input (SDI)

SDI is the SPI compatible serial data input pin.

3.5 Latch DAC Input (LDAC)

LDAC (latch DAC synchronization input) pin is used to transfer the input latch registers to their corresponding DAC registers (output latches, V OUT). When this pin is low, both V OUTA and V OUTB are updated at the same time with their input register contents. This pin can be tied to low (V SS) if the V OUT update is desired at the rising edge of the CS pin. This pin can be driven by an external control device such as an MCU I/O pin.

3.6 Hardware Shutdown Input (SHDN)

SHDN is the hardware shutdown input pin. When this pin is low, both DAC channels are shut down. DAC output is not available during the shutdown.

3.7 Analog Outputs (V OUTA, V OUTB)

V OUTA is the DAC A output pin, and V OUTB is the DAC B output pin. Each output has its own output amplifier. The DAC output amplifier of each channel can drive the output pin with a range of V SS to V DD.

3.8 Voltage Reference Inputs (V REF A, V REF B)

V REF A is the voltage reference input for DAC channel A, and V REF B is the reference input for DAC channel B. The reference on these pins is utilized to set the reference voltage on the string DAC. The input signal can range from V SS to V DD. These pins can be tied to V DD.
4.0 GENERAL OVERVIEW

The MCP4902, MCP4912 and MCP4922 are dual voltage-output 8-bit, 10-bit and 12-bit DAC devices, respectively. These devices include input amplifiers, rail-to-rail output amplifiers, reference buffers for external voltage reference, shutdown and reset-management circuitry. The devices use an SPI serial communication interface and operate with a single supply voltage from 2.7V to 5.5V.

The DAC input coding of these devices is straight binary. Equation 4-1 shows the DAC analog output voltage calculation.

\[
V_{OUT} = \left(\frac{V_{REF} \times D_n}{2^n} \right) \times G
\]

Where:
- \(V_{REF} \) = External voltage reference
- \(D_n \) = DAC input code
- \(G \) = Gain Selection
 - 2 for <GA> bit = 0
 - 1 for <GA> bit = 1
- \(n \) = DAC Resolution
 - 8 for MCP4902
 - 10 for MCP4912
 - 12 for MCP4922

The ideal output range of each device is:
- MCP4902 (n = 8)
 - (a) 0 V to 255/256 \(V_{REF} \) when gain setting = 1x.
 - (b) 0 V to 255/256 \(2 \times V_{REF} \) when gain setting = 2x.
- MCP4912 (n = 10)
 - (a) 0 V to 1023/1024 \(V_{REF} \) when gain setting = 1x.
 - (b) 0 V to 1023/1024 \(2 \times V_{REF} \) when gain setting = 2x.
- MCP4922 (n = 12)
 - (a) 0 V to 4095/4096 \(V_{REF} \) when Gain setting = 1x.
 - (b) 0 V to 4095/4096 \(2 \times V_{REF} \) when gain setting = 2x.

1 LSb is the ideal voltage difference between two successive codes. Table 4-1 illustrates the LSb calculation of each device.

<table>
<thead>
<tr>
<th>Device</th>
<th>Gain Selection</th>
<th>LSb Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP4902 (n = 8)</td>
<td>1x</td>
<td>(V_{REF}/256)</td>
</tr>
<tr>
<td>MCP4912 (n = 10)</td>
<td>1x</td>
<td>(V_{REF}/1024)</td>
</tr>
<tr>
<td>MCP4922 (n = 12)</td>
<td>1x</td>
<td>(V_{REF}/4096)</td>
</tr>
</tbody>
</table>

where \(V_{REF} \) is the external voltage reference.

4.1 DC Accuracy

4.1.1 INL ACCURACY

Integral Non-Linearity (INL) error is the maximum deviation between an actual code transition point and its corresponding ideal transition point, after offset and gain errors have been removed. The two end points (from 0x000 and 0xFFF) method is used for the calculation. Figure 4-1 shows the details.

A positive INL error represents transition(s) later than ideal. A negative INL error represents transition(s) earlier than ideal.

4.1.2 DNL ACCURACY

A Differential Non-Linearity (DNL) error is the measure of variations in code widths from the ideal code width. A DNL error of zero indicates that every code is exactly 1 LSb wide.
4.1.3 OFFSET ERROR
An offset error is the deviation from zero voltage output when the digital input code is zero.

4.1.4 GAIN ERROR
A gain error is the deviation from the ideal output, $V_{REF} - 1$ LSb, excluding the effects of offset error.

4.2 Circuit Descriptions

4.2.1 OUTPUT AMPLIFIERS
The DAC’s outputs are buffered with a low-power, precision CMOS amplifier. This amplifier provides low offset voltage and low noise. The output stage enables the device to operate with output voltages close to the power supply rails. Refer to Section 1.0 “Electrical Characteristics” for the analog output voltage range and load conditions.

In addition to resistive load driving capability, the amplifier will also drive high capacitive loads without oscillation. The amplifier’s strong outputs allow V_{OUT} to be used as a programmable voltage reference in a system.

Selecting a gain of 2 reduces the bandwidth of the amplifier in Multiplying mode. Refer to Section 1.0 “Electrical Characteristics” for the Multiplying mode bandwidth for given load conditions.

4.2.1.1 Programmable Gain Block
The rail-to-rail output amplifier has configurable gain, allowing optimal full-scale outputs for different voltage reference inputs. The output amplifier gain has two selections, a gain of 1x ($<GA> = 1$) or a gain of 2x ($<GA> = 0$).

The default value is a gain of 2 ($<GA> = 0$).

4.2.2 VOLTAGE REFERENCE AMPLIFIERS
The input buffer amplifiers for the MCP4902/4912/4922 devices provide low offset voltage and low noise. A Configuration bit for each DAC allows the V_{REF} input to bypass the V_{REF} input buffer amplifiers, achieving a Buffered or Unbuffered mode. Buffered mode provides a very high input impedance, with only minor limitations on the input range and frequency response. Unbuffered ($<BUF> = 0$) is the default configuration. Unbuffered mode provides a wide input range (0V to V_{DD}), with a typical input impedance of 165 kΩ with 7 pF.

4.2.3 POWER-ON RESET CIRCUIT
The internal Power-on Reset (POR) circuit monitors the power supply voltage (V_{DD}) during the device operation. The circuit also ensures that the DACs power-up with high output impedance ($<SHDN> = 0$, typically 500 kΩ). The devices will continue to have a high-impedance output until a valid write command is performed to either of the DAC registers and the LDAC pin meets the input low threshold.

If the power supply voltage is less than the POR threshold ($V_{POR} = 2.0V$, typical), the DACs will be held in their Reset state. The DACs will remain in that state until $V_{DD} > V_{POR}$ and a subsequent write command is received.

Figure 4-3 shows a typical power supply transient pulse and the duration required to cause a reset to occur, as well as the relationship between the duration and trip voltage. A 0.1 µF decoupling capacitor, mounted as close as possible to the V_{DD} pin, can provide additional transient immunity.
4.2.4 SHUTDOWN MODE

The user can shut down each DAC channel selectively by using a software command or shut down all channels by using the SHDN pin. During Shutdown mode, most of the internal circuits in the channel that was shut down are turned off for power savings. The serial interface remains active, thus allowing a write command to bring the device out of the Shutdown mode. There will be no analog output at the channel that was shut down and the V_{OUT} pin is internally switched to a known resistive load (500 kΩ, typical). Figure 4-4 shows the analog output stage during the Shutdown mode.

The condition of the Power-on Reset circuit during the shutdown is as follows:

a) Turned-off, if the shutdown occurred by the SHDN pin;

b) On, if the shutdown occurred by the software.

The device will remain in Shutdown mode until the SHDN pin is brought to high or a write command with $<SHDN>$ bit = 1 is latched into the device. When a DAC is changed from Shutdown to Active mode, the output settling time takes less than 10 µs, but more than the standard active mode settling time (4.5 µs).
5.0 SERIAL INTERFACE

5.1 Overview

The MCP4902/4912/4922 devices are designed to interface directly with the Serial Peripheral Interface (SPI) port, which is available on many microcontrollers and supports Mode 0,0 and Mode 1,1. Commands and data are sent to the device via the SDI pin, with data being clocked-in on the rising edge of SCK. The communications are unidirectional, thus the data cannot be read out of the MCP4902/4912/4922. The CS pin must be held low for the duration of a write command. The write command consists of 16 bits and is used to configure the DAC’s control and data latches. Register 5-1 to Register 5-3 detail the input register that is used to configure and load the DAC_A and DAC_B registers for each device. Figure 5-1 to Figure 5-3 show the write command for each device.

Refer to Figure 1-1 and SPI Timing Specifications Table for detailed input and output timing specifications for both Mode 0,0 and Mode 1,1 operation.

5.2 Write Command

The write command is initiated by driving the CS pin low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the selected DAC’s input registers. The MCP4902/4912/4922 utilizes a double-buffered latch structure to allow both DAC_A’s and DAC_B’s outputs to be synchronized with the LDAC pin, if desired. Upon the LDAC pin achieving a low state, the values held in the DAC’s input registers are transferred into the DAC’s output registers. The outputs will transition to the value and hold in the DAC_X register.

All writes to the MCP4902/4912/4922 are 16-bit words. Any clocks past the 16th clock will be ignored. The Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits. No data can be transferred into the device with CS high. This transfer will only occur if 16 clocks have been transferred into the device. If the rising edge of CS occurs prior to that, shifting of data into the input registers will be aborted.
REGISTER 5-1: WRITE COMMAND REGISTER FOR MCP4922 (12-BIT DAC)

<table>
<thead>
<tr>
<th>W-x</th>
<th>W-x</th>
<th>W-x</th>
<th>W-0</th>
<th>W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>BUF</td>
<td>GA</td>
<td>SHDN</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
<td>bit 15</td>
<td>bit 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 15
- **A/B**: DAC_A or DAC_B Selection bit
 - **1**: Write to DAC_B
 - **0**: Write to DAC_A

Bit 14
- **BUF**: V_{REF} Input Buffer Control bit
 - **1**: Buffered
 - **0**: Unbuffered

Bit 13
- **GA**: Output Gain Selection bit
 - **1**: $1x$ ($V_{OUT} = V_{REF} \times D/4096$)
 - **0**: $2x$ ($V_{OUT} = 2 \times V_{REF} \times D/4096$)

Bit 12
- **SHDN**: Output Shutdown Control bit
 - **1**: Active mode operation. V_{OUT} is available.
 - **0**: Shutdown the selected DAC channel. Analog output is not available at the channel that was shut down. V_{OUT} pin is connected to 500 kΩ (typical).

Bit 11-0
- **D11:D0**: DAC Input Data bits. Bit x is ignored.

REGISTER 5-2: WRITE COMMAND REGISTER FOR MCP4912 (10-BIT DAC)

<table>
<thead>
<tr>
<th>W-x</th>
<th>W-x</th>
<th>W-x</th>
<th>W-0</th>
<th>W-x</th>
<th>bit 15</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>BUF</td>
<td>GA</td>
<td>SHDN</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
<td>x</td>
<td>x</td>
<td>bit 15</td>
</tr>
</tbody>
</table>

Bit 15
- **A/B**: DAC_A or DAC_B Selection bit
 - **1**: Write to DAC_B
 - **0**: Write to DAC_A

Bit 14
- **BUF**: V_{REF} Input Buffer Control bit
 - **1**: Buffered
 - **0**: Unbuffered

Bit 13
- **GA**: Output Gain Selection bit
 - **1**: $1x$ ($V_{OUT} = V_{REF} \times D/4096$)
 - **0**: $2x$ ($V_{OUT} = 2 \times V_{REF} \times D/4096$)

Bit 12
- **SHDN**: Output Shutdown Control bit
 - **1**: Active mode operation. V_{OUT} is available.
 - **0**: Shutdown the selected DAC channel. Analog output is not available at the channel that was shut down. V_{OUT} pin is connected to 500 kΩ (typical).

Bit 11-0
- **D11:D0**: DAC Input Data bits. Bit x is ignored.

REGISTER 5-3: WRITE COMMAND REGISTER FOR MCP4902 (8-BIT DAC)

<table>
<thead>
<tr>
<th>W-x</th>
<th>W-x</th>
<th>W-x</th>
<th>W-0</th>
<th>W-x</th>
<th>bit 15</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>BUF</td>
<td>GA</td>
<td>SHDN</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>bit 15</td>
</tr>
</tbody>
</table>

Bit 15
- **A/B**: DAC_A or DAC_B Selection bit
 - **1**: Write to DAC_B
 - **0**: Write to DAC_A

Bit 14
- **BUF**: V_{REF} Input Buffer Control bit
 - **1**: Buffered
 - **0**: Unbuffered

Bit 13
- **GA**: Output Gain Selection bit
 - **1**: $1x$ ($V_{OUT} = V_{REF} \times D/4096$)
 - **0**: $2x$ ($V_{OUT} = 2 \times V_{REF} \times D/4096$)

Bit 12
- **SHDN**: Output Shutdown Control bit
 - **1**: Active mode operation. V_{OUT} is available.
 - **0**: Shutdown the selected DAC channel. Analog output is not available at the channel that was shut down. V_{OUT} pin is connected to 500 kΩ (typical).

Bit 11-0
- **D11:D0**: DAC Input Data bits. Bit x is ignored.

Legend

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Readable bit</td>
</tr>
<tr>
<td>W</td>
<td>Writable bit</td>
</tr>
<tr>
<td>U</td>
<td>Unimplemented bit, read as '0'</td>
</tr>
<tr>
<td>-n</td>
<td>Value at POR</td>
</tr>
<tr>
<td>1</td>
<td>bit is set</td>
</tr>
<tr>
<td>0</td>
<td>bit is cleared</td>
</tr>
<tr>
<td>x</td>
<td>bit is unknown</td>
</tr>
</tbody>
</table>
FIGURE 5-1: Write Command for MCP4922 (12-bit DAC).

Note: X = "don't care" bits

FIGURE 5-2: Write Command for MCP4912 (10-bit DAC).

Note: X = "don't care" bits

FIGURE 5-3: Write Command for MCP4902 (8-bit DAC).
6.0 **TYPICAL APPLICATIONS**

The MCP4902/4912/4922 family of devices are general purpose DACs intended to be used in applications where a precision with low-power and moderate bandwidth is required.

Applications generally suited for the devices are:
- Set Point or Offset Trimming
- Sensor Calibration
- Digitally-Controlled Multiplier/Divider
- Portable Instrumentation (Battery Powered)
- Motor Control Feedback Loop

6.1 **Digital Interface**

The MCP4902/4912/4922 utilizes a 3-wire synchronous serial protocol to transfer the DAC’s setup and output values from the digital source. The serial protocol can be interfaced to SPI or Microwire peripherals that is common on many microcontroller units (MCUs), including Microchip’s PIC® MCUs and dsPIC® DSCs.

In addition to the three serial connections (CS, SCK and SDI), the LDAC signal synchronizes the two DAC outputs. By bringing down the LDAC pin to “low”, all DAC input codes and settings in the two DAC input registers are latched into their DAC output registers at the same time. Therefore, both DAC_A and DAC_B outputs are updated at the same time. Figure 6-1 shows an example of the pin connections. Note that the LDAC pin can be tied low (VSS) to reduce the required connections from 4 to 3 I/O pins. In this case, the DAC output can be immediately updated when a valid 16-clock transmission has been received and CS pin has been raised.

6.2 **Power Supply Considerations**

The typical application will require a bypass capacitor in order to filter high-frequency noise. The noise can be induced onto the power supply’s traces from various events such as digital switching or as a result of changes on the DAC’s output. The bypass capacitor helps to minimize the effect of these noise sources. Figure 6-1 illustrates an appropriate bypass strategy. In this example, two bypass capacitors are used in parallel: (a) 0.1 µF (ceramic) and (b) 10 µF (tantalum). These capacitors should be placed as close to the device power pin (VDD) as possible (within 4 mm).

The power source supplying these devices should be as clean as possible. If the application circuit has separate digital and analog power supplies, VDD and VSS should reside on the analog plane.

FIGURE 6-1: Typical Connection Diagram.
6.4 Single-Supply Operation

The MCP4902/4912/4922 family of devices are rail-to-rail voltage output DAC devices designed to operate with a V_{DD} range of 2.7V to 5.5V. Its output amplifier is robust enough to drive small-signal loads directly. Therefore, it does not require any external output buffer for most applications.

6.4.1 DC SET POINT OR CALIBRATION

A common application for the DAC devices is digitally-controlled set points and/or calibration of variable parameters, such as sensor offset or slope. For example, the MCP4922 provides 4096 output steps. If the external voltage reference (V_{REF}) is 4.096V, the LSb size is 1 mV. If a smaller output step size is desired, a lower external voltage reference is needed.

6.4.1.1 Decreasing Output Step Size

If the application is calibrating the bias voltage of a diode or transistor, a bias voltage range of 0.8V may be desired with about 200 µV resolution per step. Two common methods to achieve a 0.8V range is to either reduce V_{REF} to 0.82V or use a voltage divider on the DAC’s output.

Using a V_{REF} is an option if the V_{REF} is available with the desired output voltage range. However, occasionally, when using a low-voltage V_{REF}, the noise floor causes SNR error that is intolerable. Using a voltage divider method is another option and provides some advantages when V_{REF} needs to be very low or when the desired output voltage is not available. In this case, a larger value V_{REF} is used while two resistors scale the output range down to the precise desired level.

Example 6-1 illustrates this concept. Note that the bypass capacitor on the output of the voltage divider plays a critical function in attenuating the output noise of the DAC and the induced noise from the environment.

Example 6-1: EXAMPLE CIRCUIT OF SET POINT OR THRESHOLD CALIBRATION

\[
V_{OUT} = V_{REF} \cdot G \cdot \frac{D_n}{2^N}
\]

\[
V_{trip} = V_{OUT} \left(\frac{R_2}{R_1 + R_2} \right)
\]

$G = \text{Gain selection (1x or 2x)}$

$D_n = \text{Digital value of DAC (0-255) for MCP4901/MCP4902}$

$D_n = \text{Digital value of DAC (0-1023) for MCP4911/MCP4912}$

$D_n = \text{Digital value of DAC (0-4095) for MCP4921/MCP4922}$

$N = \text{DAC Bit Resolution}$

© 2010 Microchip Technology Inc.

DS22250A-page 28
6.4.1.2 Building a "Window" DAC

When calibrating a set point or threshold of a sensor, typically only a small portion of the DAC output range is utilized. If the LSB size is adequate enough to meet the application’s accuracy needs, the unused range is sacrificed without consequences. If greater accuracy is needed, then the output range will need to be reduced to increase the resolution around the desired threshold.

Example 6-2: SINGLE-SUPPLY “WINDOW” DAC

(a) Single Output DAC:
MCP4901
MCP4911
MCP4921

(b) Dual Output DAC:
MCP4902
MCP4912
MCP4922

\[V_{OUT} = V_{REF} \cdot G \cdot \frac{D_n}{2^N} \]

G = Gain selection (1x or 2x)

\[D_n = \text{Digital value of DAC (0-255) for MCP4901/MCP4902} \]

\[= \text{Digital value of DAC (0-1023) for MCP4911/MCP4912} \]

\[= \text{Digital value of DAC (0-4095) for MCP4921/MCP4922} \]

N = DAC Bit Resolution

\[R_{23} = \frac{R_2 R_3}{R_2 + R_3} \]

\[V_{23} = \frac{(V_{CC} R_2) + (V_{CC} R_3)}{R_2 + R_3} \]

\[V_{trip} = \frac{V_{OUT} R_{23} + V_{23} R_1}{R_2 + R_{23}} \]

If the threshold is not near \(V_{REF} \) or \(V_{SS} \), then creating a "window" around the threshold has several advantages. One simple method to create this "window" is to use a voltage divider network with a pull-up and pull-down resistor. Example 6-2 and Example 6-4 illustrate this concept.
6.5 Bipolar Operation

Bipolar operation is achievable using the MCP4902/4912/4922 family of devices by using an external operational amplifier (op amp). This configuration is desirable due to the wide variety and availability of op amps. This allows a general purpose DAC, with its cost and availability advantages, to meet almost any desired output voltage range, power and noise performance.

Example 6-3 illustrates a simple bipolar voltage source configuration. R1 and R2 allow the gain to be selected, while R3 and R4 shift the DAC’s output to a selected offset. Note that R4 can be tied to VREF instead of VSS, if a higher offset is desired. Also note that a pull-up to VREF could be used instead of R4, if a higher offset is desired.

EXAMPLE 6-3: DIGITALLY-CONTROLLED BIPOLAR VOLTAGE SOURCE

![Diagram showing bipolar voltage source](image)

6.5.1 DESIGN EXAMPLE: DESIGN A BIPOLAR DAC USING EXAMPLE 6-3 WITH 12-BIT MCP4922 OR MCP4921

An output step magnitude of 1 mV with an output range of ±2.05V is desired for a particular application. The following steps show the details:

Step 1: Calculate the range: +2.05V – (-2.05V) = 4.1V.

Step 2: Calculate the resolution needed:

\[4.1V/1 \text{ mV} = 4100 \]

Since \(2^{12} = 4096 \), 12-bit resolution is desired.

Step 3: The amplifier gain \((R_2/R_1) \) must be equal to the desired minimum output to achieve bipolar operation. Since any gain can be realized by choosing resistor values \((R_1+R_2) \), the VREF source needs to be determined first. If a VREF of 4.1V is used, solve for the gain by setting the DAC to 0, knowing that the output needs to be -2.05V. The equation can be simplified to:

\[\frac{-R_2}{R_1} = \frac{-2.05}{4.1} \]

If \(R_1 = 20 \text{k}\Omega \) and \(R_2 = 10 \text{k}\Omega \), the gain will be 0.5.

Step 4: Next, solve for \(R_3 \) and \(R_4 \) by setting the DAC to 4096, knowing that the output needs to be +2.05V.

\[\frac{R_4}{(R_3 + R_4)} = \frac{2.05V + 0.5V_{\text{REF}}}{1.5V_{\text{REF}}} = \frac{2}{3} \]

If \(R_4 = 20 \text{k}\Omega \), then \(R_3 = 10 \text{k}\Omega \).
6.6 Selectable Gain and Offset Bipolar Voltage Output Using a Dual DAC

In some applications, precision digital control of the output range is desirable. Example 6-4 illustrates how to use the MCP4902/4912/4922 to achieve this in a bipolar or single-supply application.

EXAMPLE 6-4: BIPOLAR VOLTAGE SOURCE WITH SELECTABLE GAIN AND OFFSET

This circuit is typically used in Multiplier mode and is ideal for linearizing a sensor whose slope and offset varies. Refer to Section 6.9 “Using Multiplier Mode” for more information on Multiplier mode.

The equation to design a bipolar “window” DAC would be utilized if \(R_3, R_4 \) and \(R_5 \) are populated.

\[
V_{OUTA} = \left(V_{REFA} \cdot G_A \right) \cdot \frac{D_A}{2^N}
\]

\[
V_{OUTB} = \left(V_{REFB} \cdot G_B \right) \cdot \frac{D_B}{2^N}
\]

\[
V_{IN+} = \frac{V_{OUTB} \cdot R_4 + V_{CC} \cdot R_3}{R_3 + R_4}
\]

\[
V_O = V_{IN+} \left(1 + \frac{R_2}{R_1} \right) - V_{OUTA} \frac{R_2}{R_1}
\]

Offset Adjust Gain Adjust

Bipolar “Window” DAC using \(R_4 \) and \(R_5 \)

\[
V_{45} = \frac{V_{CC} \cdot R_4 + V_{CC} \cdot R_5}{R_4 + R_5}
\]

\[
V_{IN+} = \frac{V_{OUTB} \cdot R_{45} + V_{45} \cdot R_3}{R_3 + R_{45}}
\]

\[
V_O = V_{IN+} \left(1 + \frac{R_2}{R_1} \right) - V_{OUTA} \frac{R_2}{R_1}
\]

Offset Adjust Gain Adjust

\[G_x = \text{Gain selection (1x or 2x)} \]

\[N = \text{DAC Bit Resolution} \]

\[D_A, D_B = \text{Digital value of DAC (0-255) for MCP4902} \]

\[= \text{Digital value of DAC (0-1023) for MCP4912} \]

\[= \text{Digital value of DAC (0-4095) for MCP4922} \]
6.7 Designing a Double-Precision DAC Using a Dual DAC

Example 6-5 illustrates how to design a single-supply voltage output capable of up to 24-bit resolution from a dual 12-bit DAC. This design is simply a voltage divider with a buffered output.

As an example, if an application similar to the one developed in Section 6.5.1 “Design Example: Design a Bipolar DAC Using Example 6-3 with 12-bit MCP4922 or MCP4921” required a resolution of 1 µV instead of 1 mV and a range of 0V to 4.1V, then 12-bit resolution would not be adequate.

Step 1: Calculate the resolution needed:

\[\frac{4.1\text{V}}{1 \text{µV}} = 4.1 \times 10^6 \]. Since \(2^{22} = 4.2 \times 10^6 \), 22-bit resolution is desired. Since DNL = ±0.75 LSb, this design can be attempted with the MCP4922.

Step 2: Since DACB’s \(V_{OUTB} \) has a resolution of 1 mV, its output only needs to be “pulled” 1/1000 to meet the 1 µV target. Dividing \(V_{OUTA} \) by 1000 would allow the application to compensate for DACB’s DNL error.

Step 3: If \(R_2 \) is 100Ω, then \(R_1 \) needs to be 100 kΩ.

Step 4: The resulting transfer function is not perfectly linear, as shown in the equation of Example 6-5.

EXAMPLE 6-5: SIMPLE, DOUBLE-PRECISION DAC WITH MCP4922

\[
V_{OUTA} = V_{REF}G \frac{D_A}{2^{12}}
\]

\[
V_O = \frac{V_{OUTA}R_2 + V_{OUTB}R_1}{R_1 + R_2}
\]

\[
V_{OUTB} = V_{REF}G \frac{D_B}{2^{12}}
\]

G = Gain selection (1x or 2x)
D = Digital value of DAC (0-4096)
6.8 Building Programmable Current Source

Example 6-6 shows an example for building a programmable current source using a voltage follower. The current sensor (sensor resistor) is used to convert the DAC voltage output into a digitally-selectable current source.

Adding the resistor network from Example 6-2 would be advantageous in this application. The smaller \(R_{\text{sense}} \) is, the less power dissipated across it. However, this also reduces the resolution that the current can be controlled with. The voltage divider, or “window”, DAC configuration would allow the range to be reduced, thus increasing resolution around the range of interest.

EXAMPLE 6-6: DIGITALLY-CONTROLLED CURRENT SOURCE

\[
I_b = \frac{I_L}{\beta}
\]

\[
I_L = \frac{V_{OUT}}{R_{\text{sense}}} \times \frac{\beta}{\beta + 1}
\]

where \(\beta = \) Common-Emitter Current Gain.

\[
V_{OUT} = V_{REF} \cdot G \cdot \frac{D_n}{2^N}
\]

When working with very small sensor voltages, plan on eliminating the amplifier’s offset error by storing the DAC’s setting under known sensor conditions.

(a) Single Output DAC:
- MCP4901
- MCP4911
- MCP4921

(b) Dual Output DAC:
- MCP4902
- MCP4912
- MCP4922
6.9 Using Multiplier Mode

The MCP4902/4912/4922 family of devices use external reference, and these devices are ideally suited for use as a multiplier/divider in a signal chain. The common applications are: (a) Precision programmable gain/attenuator amplifiers and (b) Motor control feedback loop. The wide input range (0V – VDD) is in Unbuffered mode and near rail-to-rail range in Buffered mode: its bandwidth (> 400 kHz), selectable 1x/2x gain and low power consumption give maximum flexibility to meet the application’s needs.

To configure the MCP4902/4912/4922 family of devices for multiple applications, connect the input signal to VREF and serially configure the DAC’s input buffer, gain and output value. The DAC’s output can utilize any of Examples 6-1 to 6-6, depending on the application requirements. Example 6-7 is an illustration of how the DAC can operate in a motor control feedback loop.

EXAMPLE 6-7: MULTIPLIER MODE USING VREF INPUT

If the gain selection bit is configured for 1x mode ($<GA>=1$), the resulting input signal will be attenuated by $D/2^n$. With the 12-bit DAC (MCP4921 or MCP4922), if the gain is configured for 2x mode ($<GA>=0$), the codes less than 2048 attenuate the signal, while the codes greater than 2048 gain the signal.

A DAC provides significantly more gain/attenuation resolution when compared to typical Programmable Gain Amplifiers. Adding an op amp to buffer the output, as illustrated in Examples 6-2 to 6-6, extends the output range and power to meet the precise needs of the application.

\[
V_{OUT} = V_{REF} \cdot G \cdot \frac{D}{2^n}
\]
7.0 DEVELOPMENT SUPPORT

7.1 Evaluation and Demonstration Boards

The Mixed Signal PICtail™ Demo Board supports the MCP4902/4912/4922 family of devices. Please refer to www.microchip.com for further information on this product's capabilities and availability.
8.0 PACKAGING INFORMATION

8.1 Package Marking Information

Legend:
- **XX...X**: Customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **e3**: Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

14-Lead PDIP (300 mil)

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Lead PDIP (300 mil)</td>
</tr>
<tr>
<td>XXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>XXXXXXXXXXXXXX</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>YYWWNNN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MCP4922</td>
</tr>
<tr>
<td>E/P e3</td>
</tr>
<tr>
<td>1011256</td>
</tr>
</tbody>
</table>

14-Lead SOIC (150 mil)

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Lead SOIC (150 mil)</td>
</tr>
<tr>
<td>XXXXXXXXXXXX</td>
</tr>
<tr>
<td>XXXXXXXXXXXX</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>YYWWNNN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MCP4922</td>
</tr>
<tr>
<td>E/SL e3</td>
</tr>
<tr>
<td>1011256</td>
</tr>
</tbody>
</table>

14-Lead TSSOP

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Lead TSSOP</td>
</tr>
<tr>
<td>XXXXX</td>
</tr>
<tr>
<td>YYWW</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NNN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4922E/ST</td>
</tr>
<tr>
<td>1011</td>
</tr>
<tr>
<td>256</td>
</tr>
</tbody>
</table>
14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>–</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>–</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.735</td>
<td>.750</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.045</td>
<td>.060</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B
14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X</td>
</tr>
<tr>
<td>Contact Pad Length</td>
<td>Y</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>Gx</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X14)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X14)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A
APPENDIX A: REVISION HISTORY

Revision A (April 2010)

- Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MCP4902: Dual 8-Bit Voltage Output DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP4902T: Dual 8-Bit Voltage Output DAC (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP4912: Dual 10-Bit Voltage Output DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP4912T: Dual 10-Bit Voltage Output DAC (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP4922: Dual 12-Bit Voltage Output DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP4922T: Dual 12-Bit Voltage Output DAC (Tape and Reel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Temperature Range: | E = -40°C to +125°C (Extended) |
| Package: | P = 14-Lead Plastic Dual In-Line (PDIP) |
| SL = 14-Lead Plastic Small Outline - Narrow (SOIC) |
| ST = 14-Lead Plastic Think Shrink Small Outline (TSSOP) |

Examples:

a) MCP4902-E/P: Extended temperature, PDIP package.
b) MCP4902-E/SL: Extended temperature, SOIC package.
c) MCP4902T-E/SL: Extended temperature, SOIC package, Tape and Reel
d) MCP4902-E/ST: Extended temperature, TSSOP package.
e) MCP4902T-E/ST: Extended temperature, TSSOP package, Tape and Reel
f) MCP4912-E/P: Extended temperature, PDIP package.
g) MCP4912-E/SL: Extended temperature, SOIC package.
h) MCP4912T-E/SL: Extended temperature, SOIC package, Tape and Reel
i) MCP4912-E/ST: Extended temperature, TSSOP package.
j) MCP4912T-E/ST: Extended temperature, TSSOP package, Tape and Reel
k) MCP4922-E/P: Extended temperature, PDIP package.
l) MCP4922-E/SL: Extended temperature, SOIC package.
m) MCP4922T-E/SL: Extended temperature, SOIC package, Tape and Reel
n) MCP4922-E/ST: Extended temperature, TSSOP package.
o) MCP4922T-E/ST: Extended temperature, TSSOP package, Tape and Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com

Technical Support:
http://support.microchip.com

Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455

- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088

- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075

- **Cleveland**
 Independence, OH
 Tel: 216-447-0464
 Fax: 216-447-0083

- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924

- **Detroit**
 Farmington Hills, MI
 Tel: 248-538-2250
 Fax: 248-538-2260

- **Kokomo**
 Kokomo, IN
 Tel: 765-864-8360
 Fax: 765-864-8387

- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608

- **Santa Clara**
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445

- **Toronto**
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2103-6700
Fax: 852-2103-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-9680-9588
Fax: 86-23-9680-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xi’an
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-741-6166
Fax: 81-45-741-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2500-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/05/10